
Równania różniczkowe zwyczajne — część 2

dr Mariusz Grządziel
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W prezentacji wykorzystano fragmenty:
e-podęcznika: W. Władimirow, J. Janus, Równania różniczkowe
zwyczajne, AGH, e-book dostępny na stronie:
https://epodreczniki.open.agh.edu.pl. e-book został
udostępniony na licencji: Creative Commons Uznanie
autorstwa – Na tych samych warunkach 3.0 Polska.
This work is dual licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 4.0 International
License and the Creative Commons Attribution-Share Alike 4.0
International License.
J. Lebl, Notes on Diffy Qs. Differential Equations for Engineers.
Createspace Independent Publishing Platform 2014. Książka
dostępna na stronie autora

https://www.jirka.org/diffyqs/

Udostępniona została na warunkach Creative Commons
Attribution-Noncommercial-Share Alike 4.0
Ta prezentacja została również udostępniona na warunkach
wyżej wymienionych licencji.
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Robert zaparzył filiżankę kawy. W chwili t = 0 temperatura
kawy była równa 89◦C (jednostką pomiaru czasu jest w tym
przykładzie minuta). W chwili t = 1 temperatura kawy wynosiła
85◦C. Robert chciałby zacząć picie kawy, gdy jej temperatura
spadnie do 60◦C. Temperatura w pomieszczeniu, w którym
znajduje się Robert, jest równa 22◦C. Kiedy Robert powinien
zacząć picie kawy?
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Oznaczmy:
▶ T [◦C] : temperatura kawy;
▶ A[◦C]: temperatura pomieszczenia;
▶ t [minuta]: czas.

Zgodnie z prawem stygnięcia Newtona

dT
dt

= k(A− T ),

dla pewnej stałej k . W naszym przykładzie A = 22, T (0) = 89,
T (1) = 85.
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Mamy:

1
T − A

dT = −k dt , („rozdzielamy zmienne”)

ln(T − A) = −kt + C, (zauważmy, że T − A > 0)

T − A = D e−kt ,

T = A + D e−kt .

Z warunku: 89 = T (0) = 22 + D otrzymujemy D = 67, więc

T = 22 + 67 e−kt .

Z drugiego warunku: 85 = T (1) = 22 + 67 e−k i
k = − ln 85−22

67 ≈ 0.0616 skąd

60 = 22 + 67e−0.0616t

i t = − ln 60−22
67

0.0616 ≈ 9.21 minut.
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Rysunek: Szkice wykresów temperatury kawy jako funkcji czasu.

Źródło: książka J. Lebla (cytowana w spisie literatury)
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Przykład
Wyznaczyć rozwiązanie ogólne równania

d y
d x

=
y2

x + 1

i rozwiązanie szczególne spełniające warunek y(0) = 5.

Zauważmy, że funkcja stała y = 0 określona na dziedzinie Dy = R \ {−1} jest
rozwiązaniem tego równania.
Będziemy szukać innych rozwiązań przy założeniu, że x ̸= −1 i y ̸= 0. Przy tych
założeniach mamy

1
y2 dy =

1
x + 1

dx ,∫ 1
y2 dy =

∫ 1
x + 1

dx ,

−1
y
= ln |x + 1|+ C.

Rozwiązanie ogólne ma więc postać

y = − 1
ln |x + 1|+ C

.

Funkcja y = 0 jest rozwiązaniem osobliwym. Stałą C wyznaczamy z równania

− 1
ln |0 + 1|+ C

= 5;

mamy więc C = −1/5; szukanym rozwiązaniem szczególnym jest

y = − 1
ln |x + 1| − 1/5

.
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Równania jednorodne
Definicja 1
Równaniem jednorodnym nazywamy równanie, które może być
zapisane postaci

d y
d t

= f
(

y
t

)
, t ̸= 0.

Szukamy rozwiązania stosując podstawienie z = y
t . Wówczas y = z t i

y ′ = t z ′ + z.
Otrzymamy równanie o zmiennych rozdzielonych

d z
d t

=
f (z)− z

t
.

Przy założeniu, że f (z)− z ̸= 0 otrzymujemy ln |t |+ C =
∫ d z

f (z)−z .
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Równanie jednorodne — przykład
Znaleźć rozwiązanie ogólne równania

d y
d t

=
y
t

(
1 +

y
t

)
Mamy f (z) = z(z + 1), więc należy obliczyć całkę∫ d z

f (z)− z
=

∫ d z
z + z2 − z

= −1
z
+ C.

Wracając do zmiennej wyjściowej otrzymamy równość
t
y = − ln |t | − C, skąd

y =
t

− log |t | − C
.

Rozwiązaniem osobliwym jest y = 0, x ̸= 0; odpowiada ono
założeniu f (z)− z ̸= 0, przy którym otrzymano rozwiązanie
ogólne.
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Równania liniowe 1-go rzędu
Liniowym niejednorodnym równaniem różniczkowym rzędu
pierwszego nazywamy równanie postaci

d y(t)
d t

+ p(t) y(t) = q(t), (1)

gdzie p(t), q(t) są znanymi funkcjami, przy czym zakładamy że p i q
są ciągłe na przedziale (a,b) oraz że q(t) nie równa się
tożsamościowo zeru. Stowarzyszonym równaniem jednorodnym
nazywamy równanie postaci

d
◦
y

d t
+ p(t)

◦
y(t) = 0.

Po przemnożeniu tego równania przez dt
◦
y

otrzymujemy równanie o

zmiennych rozdzielonych: d
◦
y
◦
y

= −p(t)d t .

Po scałkowaniu otrzymujemy
◦
y = C e−

∫
p(t) d t , C ∈ R, gdzie

całka jest rozumiana jako ustalona funkcja pierwotna.
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Poszukujemy rozwiązania równania (1) w postaci

y(t) = C(t)e−F (t),

gdzie F (t) =
∫

p(t)dt : dowolna, aczkolwiek ustalona funkcja
pierwotna funkcji p.
Po podstawieniu do równania wyjściowego otrzymamy:
dC
dt = q(t)eF (t) lub dC = q(t)eF (t)dt . Zatem

C(t) = C0 +
∫

q(t)eF (t) dt . Stąd już łatwo można otrzymać
postać rozwiązania ogólnego problemu niejednorodnego (1)

x(t) = e−F (t)
(

C0 +

∫
q(t)eF (t) dt

)
, F (t) =

∫
p(t)dt .

Obie całki w powyższych równościach: dowolne, aczkolwiek
ustalona funkcje pierwotne funkcji podcałkowych.
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Twierdzenie 1
Jeżeli funkcje p i q są ciągłe przedziale (a,b), to dla dowolnego
t0 ∈ (a,b) oraz y0 ∈ R, zagadnienie początkowe

d y(t)
d t

+ p(t) y(t) = q(t), y(t0) = y0 (2)

ma dokładnie jedno rozwiązanie. Rozwiązanie to jest określone
na przedziale (a,b).
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Równania liniowe 1-go rzędu — przykład
Wyznaczyć rozwiązanie ogólne równania

d y
d t

+ y(t) = t .

Rozwiązanie.
Z postaci równania: p(t) = 1, q(t) = t (por. poprzednie dwa
slajdy). Obliczamy:

F (t) =
∫

p(t)d t ≡
∫

d t = t ,∫
eF (t) q(t)d t =

∫
et t d t = et (t − 1).

Rozwiązanie ogólne równania więc postać:

y(t) = e−t(C0 + et(t − 1)).

13 / 27



Równania różniczkowe zwyczajne rzędu n ­ 1
Równaniem różniczkowym zwyczajnym (RRZ) nazywamy równanie

F (t , y(t), y ′(t), . . . , y (n)(t)) = 0, (3)

gdzie F jest funkcją różniczkowalną ze względu na każdy ze swoich
argumentów. W równaniu tym niewiadomą jest n-krotnie
różniczkowana funkcja y = y(t), zatem równanie jest równaniem
funkcyjnym. Jeżeli jesteśmy w stanie rozwiązać równanie względem
ostatniej zmiennej, wówczas możemy go napisać w postaci
równoważnej

y (n) = Ψ
(
t , y(t), y ′(t), ..., y (n−1)

)
, (4)

zwanej postacią kanoniczną skalarnego RRZ n-tego rzędu.

Definicja 2
Rozwiązaniem szczególnym (całką szczególną) równania (3) na
pewnym przedziale (a,b) nazywamy funkcję spełniającą to równanie w
każdym punkcie tego przedziału.

Definicja 3
Liczbę naturalną n nazywamy rzędem równania różniczkowego, jeżeli
w równaniu tym występuje pochodna rzędu n i nie występuje
pochodna rzędu wyższego niż n.
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Równania różniczkowe zwyczajne rzędu n ­ 1 — c.d.

Definicja 4
Wykres szczególnego rozwiązania równania różniczkowego
będziemy nazywać krzywą całkową.

Definicja 5
Zagadnienie Cauchy’ego dla równania różniczkowego rzedu n:
znaleźć rozwiązanie szczególne tego równania spełniające

y(t0) = y0, y ′(t0) = y0, . . . , y (n−1)(t0) = yn−1,

gdzie t0 oraz y0, y1, . . . , yn−1 są danymi liczbami.
y0, y1, . . . , yn−1 — wartości początkowe.
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Przykład
Rozwiązać zagadnienie Cauchy’ego dla równania

y
′′
= 18t ,

z warunkami początkowymi y(0) = 0, y ′(0) = 2.
Mamy

y ′ =
∫

18t dt = 9t2 + C1,

y =

∫
(9t2 + C1)dt = 3t3 + C1t + C2.

Z warunków początkowych otrzymujemy:

9 · 0 + C1 = 2
0 + C1 · 0 + C2 = 0.

Stąd C1 = 2, C2 = 0; szukane rozwiązanie szczególne ma
postać: y = t3 + 2t ; przedział, na którym określone jest
rozwiązanie: dowolny przedział otwarty, do którego należy
punkt 0.
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Definicja 6
Niech będą dane odcinki (a1,b1), (a2,b2), . . . , (an,bn), n ∈ N.
Jeżeli dowolnemu układowi liczb (C1, . . . ,Cn) ∈ Rn takiemu, że

Ci ∈ (ai ,bi), i = 1,2, . . . ,n,

przyporządkowana jest dokładnie jedna krzywa całkowa
równania różniczkowego rzędu n, to powiemy, że określona jest
rodzina krzywych całkowych tego równania zależna od n
parametrów (C1, . . . ,Cn).

Definicja 7
Całką ogólną równania różniczkowego rzędu n nazywamy
każdą rodzinę krzywych całkowych tego równania zależną od n
parametrów (C1, . . . ,Cn); zakładamy, że te krzywy całkowe są
wykresami funkcji klasy C(n).
Definicja ta nawiązuje do definicji z książki F. Lei, rozdz. XIV
paragraf 6.
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Przykład

Rodzina funkcji

y = C1 sin x + C2 cos x , C1 ∈ R,C2 ∈ R

jest całką ogólną równania

y ′′ + y = 0. (5)

Wszystkie rozwiązania (5) należą do tej rodziny. Dowód: skrypt
E. Ferenstein i in., wykład XI, rozdział 1.
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Równania różniczkowe liniowe rzędu drugiego

Jest to równanie postaci

y ′′ + p(t)y ′ + q(t)t = h(t), a < t < b. (6)

Twierdzenie 2
Jeżeli p, q i h są funkcjami ciągłymi na przedziale (a,b), to dla
dowolnego t0 ∈ (a,b) oraz y0, y1 ∈ R zagadnienie początkowe
ma dokładnie jedno rozwiązanie. Rozwiązanie to jest określone
na przedziale (a,b).
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Jednorodne równania różniczkowe liniowe rzędu
drugiego

Jest to równanie postaci

y ′′ + p(t)y ′ + q(t)t = 0, a < t < b. (7)
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Jednorodne równania różniczkowe liniowe rzędu
drugiego o stałych współczynnikach

Definicja 8
Równanie

y ′′ + py ′ + qy = 0, (L2)

gdzie p oraz q są stałymi nazywamy równaniem liniowym
jednorodnym rzędu drugiego o stałych współczynnikach.
Szukamy rozwiązań postaci y = esx ; s tak, aby równanie (L2) było
spełnione.
Obliczając pochodne i podstawiając do równania otrzymujemy:

y ′(x) = sesx , y ′′(x) = s2esx , (8)

s2esx + psesx + qesx = 0, (9)

s2 + ps + q = 0. (10)

Definicja 9
Równanie s2 + ps + q = 0 będziemy nazywać równaniem
charakterystycznym równania różniczkowego (L2).
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Niech ∆ = p2 − 4q: wyznacznik równania charakterystycznego.
1. ∆ > 0. Równanie ma dwa pierwiastki rzeczywiste s1 i s2;

y1 = es1x i y2 = es2x są rozwiązaniami równania
różniczkowego (L2). Całka ogólne ma postać:

y = C1es1x + C2es2x , C1,C2 ∈ R. (11)

2. ∆ = 0. Równanie ma jeden pierwiastek rzeczywisty s0.
Oprócz y1 = es0x rozwiązaniem jest (można sprawdzić)
y2 = xes0x ; całka ogólną jest

y = C1es0x + C2xes0x , C1,C2 ∈ R. (12)

3. ∆ < 0. Równanie ma dwa pierwiastki zespolone:
s1 = α+ iβ i s2 = α− iβ. Można wykazać, że całka ogólna
ma postać

y = eαx(C1 sinβx + C2 cosβx), C1,C2 ∈ R.

Można pokazać, że wszystkie rozwiązania równania (L2) są tej
postaci, por. [Leja (2008), rozd. XIV, paragraf 27].
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Zastosowania do ruchu drgającego
Równanie ruchu drgającego punktu materialnego
poruszającego się po osi x pod działaniem siły sprężystej
skierowanej ku punktowi x = 0:

d2x
dt2 + a2x = 0.

Jeżeli oprócz siły sprężystej działa siła hamująca, taka jak
np.tarcie, proporcjonalna do prędkości dx/dt , to równanie
ruchu przyjmie postać

d2x
dt2 + 2b

dx
dt

+ a2x = 0.

▶ jeżeli b ­ a: siła tłumiąca duża, ruch nie jest okresowy;
▶ jeżeli b < a: siła tłumiąca mała, drgania zanikające.
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Rysunek: Drgania: brak siły tłumiącej; źródło: J. Lebl, Notes on Diffy
Qs. Differential Equations for Engineers.
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Rysunek: Drgania: siła tłumiąca mała, zanikająca; źródło: J. Lebl,
Notes on Diffy Qs. Differential Equations for Engineers.
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Rysunek: Drgania: siła tłumiąca duża; źródło: J. Lebl, Notes on Diffy
Qs. Differential Equations for Engineers.
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