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W prezentacji wykorzystano fragmenty:

e-podecznika: W. Wiadimirow, J. Janus, Réwnania rézniczkowe
zwyczajne, AGH, e-book dostepny na stronie:
https://epodreczniki.open.agh.edu.pl. e-book zostat
udostepniony na licencji: Creative Commons Uznanie
autorstwa — Na tych samych warunkach 3.0 Polska.

This work is dual licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 4.0 International
License and the Creative Commons Attribution-Share Alike 4.0
International License.

J. Lebl, Notes on Diffy Qs. Differential Equations for Engineers.
Createspace Independent Publishing Platform 2014. Ksigzka
dostepna na stronie autora

https://www. jirka.org/diffyqgs/

Udostepniona zostata na warunkach Creative Commons
Attribution-Noncommercial-Share Alike 4.0

Ta prezentacja zostata réwniez udostepniona na warunkach
wyzej wymienionych licencji.
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Robert zaparzyt filizanke kawy. W chwili t = 0 temperatura
kawy byta rowna 89°C (jednostkg pomiaru czasu jest w tym
przyktadzie minuta). W chwili { = 1 temperatura kawy wynosita
85°C. Robert chciatby zacza¢ picie kawy, gdy jej temperatura
spadnie do 60°C. Temperatura w pomieszczeniu, w ktérym
znajduje sie Robert, jest rowna 22°C. Kiedy Robert powinien
zaczgC picie kawy?
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Oznaczmy:
» T[°C] : temperatura kawy;
» A[°C]: temperatura pomieszczenia;
» {[minuta]: czas.

Zgodnie z prawem stygniecia Newtona

dT

dt
dla pewnej statej k. W naszym przyktadzie A = 22, T(0) = 89,
T(1) =85.

=k(A-T),
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Mamy:
y

T A dl = —k dt, (,rozdzielamy zmienne”)
In(T — A) = —kt+ C, (zauwazmy, ze T — A > 0)
T-A=De ¥
T=A+De X

Z warunku: 89 = T(0) = 22 + D otrzymujemy D = 67, wiec
T=22+67¢ 1.

Z drugiego warunku: 85 = T(1) =22 + 67 e X i
k = —In 8222 ~ 0.0616 skad

60 = 22 + 67 0001

. Ineoe;722 .
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E)

Rysunek: Szkice wykresow temperatury kawy jako funkcji czasu.

Zrédto: ksigzka J. Lebla (cytowana w spisie literatury)
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Przyktad

Wyznaczyé rozwigzanie ogéine réwnania
ay _ s
dx  x+1

i rozwigzanie szczegdlne spetniajace warunek y(0) = 5.

Zauwazmy, ze funkcja stata y = 0 okre$lona na dziedzinie D, = R \ {1} jest
rozwigzaniem tego réwnania.

Bedziemy szuka¢ innych rozwigzan przy zatozeniu, ze x # —1iy # 0. Przy tych
zatozeniach mamy

1 1
Y=

1 1

[y =g
LTS
y

Rozwigzanie ogélne ma wigc postaé

1
Y= T dlrc
Funkcja y = 0 jest rozwigzaniem osobliwym. Stala C wyznaczamy z réwnania
1
’mm+u+c’5
mamy wiec C = —1/5; szukanym rozwigzaniem szczegdlnym jest

1

Y= TRx 1 -1/5
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Rownania jednorodne
Definicja 1
Réwnaniem jednorodnym nazywamy réwnanie, ktére moze byc¢

zapisane postaci
dy (¥
dt f(t) 170

Szukamy rozwigzania stosujgc podstawienie z = { Wowczas y = zti
y' =tz +z.
Otrzymamy réwnanie o zmiennych rozdzielonych
dz _f(z)-z
at t
Przy zatozeniu, ze f(z) — z # 0 otrzymujemy In[t| + C = [ & o)z
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Rownanie jednorodne — przyktad
Znalez¢ rozwigzanie ogdlne réwnania

dy _y y)
dt_t<1+t

Mamy f(z) = z(z + 1), wiec nalezy obliczy¢ catke

/ dz _/ dz ——1+C
f(2)—z J z+2z2—-2z  z '

Wracajac do zmiennej wyjsciowej otrzymamy rownosé
}l, = —In|t| — C, skad

_ t

~ —loglt| - C’

Rozwigzaniem osobliwym jest y = 0, x # 0; odpowiada ono
zatozeniu f(z) — z # 0, przy ktérym otrzymano rozwigzanie
ogélne.

y
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Réwnania liniowe 1-go rzedu
Liniowym niejednorodnym réwnaniem rézniczkowym rzedu
pierwszego nazywamy réwnanie postaci

dy(t) _
g TPy =), (1)

gdzie p(t), q(t) sa znanymi funkcjami, przy czym zaktadamy ze pi q
sa ciagte na przedziale (a, b) oraz ze q(t) nie réwna sie
tozsamos$ciowo zeru. Stowarzyszonym réwnaniem jednorodnym
nazywamy réwnanie postaci

dy B
7 PN y(H) = 0.

Po przemnozenlu tego réwnania przez otrzymulemy réwnanie o
y

zmiennych rozdzielonych: ? =—p(H)dt.
y ~
Po scatkowaniu otrzymujemy y = Ce~ /P9t ¢ ¢ R, gdzie

catka jest rozumiana jako ustalona funkcja pierwotna.
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Poszukujemy rozwigzania rownania (1) w postaci
y(t)=C(tye ™,

gdzie F(t) = [ p(t) dt: dowolna, aczkolwiek ustalona funkcja
pierwotna funkcji p.

Po podstawieniu do rownania wyjsciowego otrzymamy:

9¢ — q(t)eFD b dC = q(t)eFDdt. Zatem

C(t) = Co + [ q(t) eF D dt. Stad juz tatwo mozna otrzymaé
postac rozwigzania ogélnego problemu niejednorodnego (1)

x(t) = e F® ( +/q F dt) F(t):/p(t) dt

Obie catki w powyzszych rownosciach: dowolne, aczkolwiek
ustalona funkcje pierwotne funkcji podcatkowych.
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Twierdzenie 1
Jezeli funkcje p i q sa ciagte przedziale (a, b), to dla dowolnego
fh € (a,b) oraz yy € R, zagadnienie poczgtkowe

dé//(tt) +p(t)y(t) = q(t), y(b) = o )

ma doktadnie jedno rozwigzanie. Rozwigzanie to jest okreslone
na przedziale (a, b).

12/27



Rownania liniowe 1-go rzedu — przyktad
Wyznaczy¢ rozwigzanie ogélne rownania

dy B
m‘*—y(t)—t.

Rozwiazanie.
Z postaci rownania: p(t) = 1, g(t) = t (por. poprzednie dwa
slajdy). Obliczamy:

F(t):/p(t)dtz/dt:t,
/eF(f)q(t)dt:/e’tdt:e’(t—1).
Rozwigzanie ogdélne rownania wiec postac:

y(t)= e (Co+€'(t—1)).
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Rownania rozniczkowe zwyczajne rzedu n > 1

Réwnaniem rézniczkowym zwyczajnym (RRZ) nazywamy réwnanie

F(t,y(1),y'(1),....y"(t) =0, &)

gdzie F jest funkcjg rézniczkowalng ze wzgledu na kazdy ze swoich
argumentéw. W réwnaniu tym niewiadomg jest n-krotnie
rézniczkowana funkcja y = y(t), zatem réwnanie jest rownaniem
funkcyjnym. Jezeli jeste$my w stanie rozwigza¢ réwnanie wzgledem
ostatniej zmiennej, wéwczas mozemy go napisa¢ w postaci
rébwnowaznej

YO = (& y (1), (), oy )
zwanej postacig kanoniczng skalarnego RRZ n-tego rzedu.
Definicja 2
Rozwigzaniem szczegdlnym (catkg szczegdlnag) réwnania (3) na
pewnym przedziale (a, b) nazywamy funkcje spetniajaca to réwnanie w
kazdym punkcie tego przedziatu.
Definicja 3
Liczbe naturalng n nazywamy rzedem réwnania rézniczkowego, jezeli

w réwnaniu tym wystepuje pochodna rzedu n i nie wystepuje
pochodna rzedu wyzszego niz n.
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Roéwnania rozniczkowe zwyczajne rzedu n > 1 — c.d.

Definicja 4

Wykres szczegdlnego rozwigzania rownania rézniczkowego
bedziemy nazywac krzywa catkowa.

Definicja 5

Zagadnienie Cauchy’ego dla rownania réZzniczkowego rzedu n:
znalez¢ rozwigzanie szczegdlne tego rownania spetniajace

y(to) = Y0, ¥ () = Yo, -, Y (ko) = ¥n_1,

gazie ty oraz yy, v1, - - ., Yn—1 S8 danymi liczbami.
Yo, Y1, - - -, ¥n_1 — warto$ci poczatkowe.
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Przyktad

Rozwigza¢ zagadnienie Cauchy’ego dla réwnania
y” = 18t,
z warunkami poczatkowymi y(0) = 0, y’(0) = 2.
Mamy
y = /18tdt:9t2+ Ci,

y=[©F +Cdt=3C+Cit+ Co
Z warunkéw poczatkowych otrzymujemy:

9:-0+Cy =2
0+Ci-0+Cr=0.

Stad C; = 2, C, = 0; szukane rozwigzanie szczeg6lne ma
postaé: y = 2 + 2t; przedziat, na ktérym okre$lone jest
rozwigzanie: dowolny przedziat otwarty, do ktérego nalezy
punkt 0.
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Definicja 6
Niech beda dane odcinki (a1, by), (a2, b2),...,(an, bn), n € N.
Jezeli dowolnemu uktadowi liczb (Cy, ..., Cp) € R" takiemu, ze

C,-e(a,-,b,-), i:1,2,...,n,

przyporzadkowana jest doktadnie jedna krzywa catkowa
réwnania rézniczkowego rzedu n, to powiemy, ze okreslona jest
rodzina krzywych catkowych tego rownania zalezna od n
parametrow (Cy, . .., Cp).

Definicja 7

Catkag ogolng rownania rézniczkowego rzedu n nazywamy
kazdg rodzine krzywych catkowych tego rownania zalezng od n
parametrow (Cy, ..., Cp); zaktadamy, Ze te krzywy catkowe sg
wykresami funkcji klasy C(").

Definicja ta nawigzuje do definicji z ksigzki F. Lei, rozdz. XIV
paragraf 6.
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Przyktad

Rodzina funkcji
y=Cysinx+ Cocosx, CieR,CoeR
jest catkg ogdblng rownania
y'+y=0. (5)

Wszystkie rozwigzania (5) nalezg do tej rodziny. Dowdd: skrypt
E. Ferenstein i in., wykfad Xl, rozdziat 1.
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Rownania rézniczkowe liniowe rzedu drugiego

Jest to rownanie postaci
y' +p(t)y +q)t=nh(t), a<t<bh. (6)

Twierdzenie 2

Jezeli p, q i h sg funkcjami cigglymi na przedziale (a, b), to dla
dowolnego ty € (a, b) oraz yy, y1 € R zagadnienie poczgtkowe
ma doktadnie jedno rozwigzanie. Rozwigzanie to jest okreslone
na przedziale (a, b).
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Jednorodne réwnania rézniczkowe liniowe rzedu
drugiego

Jest to réwnanie postaci

y'+p(t)y +qt)t=0, a<t<b. (7)
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Jednorodne rownania rézniczkowe liniowe rzedu
drugiego o statych wspdétczynnikach
Definicja 8
Rdwnanie
y'+py' +ay=0, (L2)

gdzie p oraz q sg statymi nazywamy réwnaniem liniowym
jednorodnym rzedu drugiego o statych wspdifczynnikach.
Szukamy rozwigzan postaci y = e%¥; s tak, aby réwnanie (L2) byto
spetnione.
Obliczajac pochodne i podstawiajgc do réwnania otrzymujemy:

y’(x) _ Sesx7 y”(x) _ 8263X7

SZesx +psesx + qesx _ 07

s?+ps+q=0. (1

—
o O
- = =

Definicja 9
Réwnanie s? 4 ps + q = 0 bedziemy nazywac réwnaniem
charakterystycznym réwnania rézniczkowego (L2).
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Niech A = p? — 4g: wyznacznik réwnania charakterystycznego.

1. A > 0. Réwnanie ma dwa pierwiastki rzeczywiste sy i so;
y1 = e51% i y», = e%2X sg rozwigzaniami rownania
rézniczkowego (L2). Catka ogdlne ma postac:

y= Cq eS‘X+02932X, Ci,Co e R. (11)

2. A = 0. Réwnanie ma jeden pierwiastek rzeczywisty sg.
Oprécz y; = e%* rozwigzaniem jest (mozna sprawdzic)
yo = xe%%; catka ogélng jest

y = C16%% + Coxe®*, (Cy,Co € R. (12)

3. A < 0. Réwnanie ma dwa pierwiastki zespolone:
Sy =a+iBis =a—if. Mozna wykaza¢, ze catka ogélna
ma postaé

y= e“X(C1 sin 8x + Cocos Bx), Cq,Co € R.

Mozna pokazaé, ze wszystkie rozwigzania réwnania (L2) s3 tej
postaci, por. [Leja (2008), rozd. XIV, paragraf 27].
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Zastosowania do ruchu drgajacego

Roéwnanie ruchu drgajacego punktu materialnego
poruszajgcego sie po osi x pod dziataniem sity sprezystej
skierowanej ku punktowi x = 0:

’x

W +ax=0.
Jezeli oprocz sity sprezystej dziata sita hamujgca, taka jak
np.tarcie, proporcjonalna do predkosci dx/dt, to rownanie
ruchu przyjmie postaé

d?x ax
Z 4 2b— +ax=0.
dt2+ bdt+ax 0

> jezeli b > a: sita thumigca duza, ruch nie jest okresowy;
> jezeli b < a: sita thumigca mata, drgania zanikajgce.
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Rysunek: Drgania: brak sity ttumigcej; zrodto: J. Lebl, Notes on Diffy
Qs. Differential Equations for Engineers.
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Rysunek: Drgania: sita ttumigca mata, zanikajaca; zrédto: J. Lebl,
Notes on Diffy Qs. Differential Equations for Engineers.
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Rysunek: Drgania: sita ttumigca duza; zrédto: J. Lebl, Notes on Diffy
Qs. Differential Equations for Engineers.
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