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Przykład wprowadzający
W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
6841 domów Maplewood (New Jersey) z lat: 1970 (zmienna y1970) i 2000 (zmienna
y2000). Interesuje nas zależność pomiędzy cenami domów: z roku 1970 i 2000.

Dane dotyczące cen domów w Maplewood
Dane (w dolarach) dotyczące pierwszych 12 domów z tego zbioru danych:

> homedata[1:12,]
y1970 y2000

1 89700 359100
2 118400 504500
3 116400 477300
4 122000 500400
5 91500 433900
6 102800 464800
7 71700 395300
8 71400 340700
9 68200 297400
10 71900 198600
11 65100 225800
12 59700 231500

Te skrócone dane zostaną zapisane do zbioru h1.

Wykres rozproszenia

Dopasowanie prostej do chmury danych
W oparciu o wykres rozproszenia można próbować ocenić istnienie i charakter zależ-
ności zmiennej y2000 i zmiennej y1970.
Problem: w jaki sposób dobrać prostą (o równaniu y = b0 + b1x) tak, aby najlepiej
pasowała do „chmury danych” przedstawionej na wykresie rozproszenia.

Liniowa zależność pomiędzy dwiema zmiennymi, prosta regresji
Rozważmy przypadek ogólny
Dane: próba dwucechowa (x1, y1), . . . , (xn, yn)
W naszym przykładzie: n = 12, x-y odpowiadają cenom z roku 1970, y-eki cenom z
roku 2000.
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Rysunek 1: Wykresy rozproszenia dla danych dotyczących h1

Prosta MNK
Chcemy „dopasować” prostą y = b0 + b1x do naszych danych (chmury punktów). Dla
danego xi wartość ŷi = b0 + b1xi można interpretować jako wartość y przewidywa-
ną na podstawie rozpatrywanej prostej dla wartości zmiennej objaśniającej równej xi.
Błąd oszacowania, czyli tzw. wartość resztowa lub rezyduum wynosi yi − ŷi.
Chcemy znaleźć prostą y = b0 + b1x, dla której kwadratów rezyduów

S(b0, b1) =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − (b0 + b1xi))2 (1)

jest minimalna.
Współczynnik b1 nazywamy współczynnikiem kierunkowym a b0 wyrazem wolnym.

Liniowa zależność pomiędzy dwiema zmiennymi, prosta regresji

Definicja 1. Prostą regresji opartą na metodzie najmniejszych kwadratów nazywamy
prostą, dla której wartość sumy S(b0, b1) w (1) traktowanej jako funkcja wszystkih
możliwych wartości współczynnika kierunkowego i wyrazu wolnego, jest minimalna.

Nazwy: prosta regresji, prosta MNK.

Liniowa zależność pomiędzy dwiema zmiennymi, prosta regresji
Stosując podstawowe techniki znajdowania mimimum funkcji dwóch zmiennych i pro-
ste przekształcenia algebraiczne otrzymujemy:

b1 =
∑n
i=1 xi(yi − ȳ)∑n
i=1(xi − x̄)2 ,

gdzie x̄ i ȳ oznaczją średnie dla x1, . . . , xn i y1, . . . , yn oraz

b0 =
1
n

( n∑
i=1

yi − b1
n∑
i=1

xi
)
.

Wartość y = b0 + b1x nazywamy wartością przewidywaną zmiennej objaśnianej na
podstawie prostej MNK dla wartości zmiennej objaśniającej równej x.
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Rysunek 2: Wykres rozproszenia+prosta MNK dla danych h1

Dane h1:Wykres rozproszenia+prosta MNK

Rozkład całkowitej zmienności zmiennej objaśnianej
Oznaczmy

SST =
n∑
i=1

(yi − ȳ)2 (2)

SSR =
n∑
i=1

(ŷi − ȳ)2 (3)

SSE =
n∑
i=1

(yi − ŷi)2 (4)

gdzie SST:całkowita suma kwadratów (Total Sum of Squares), SSR regresyjna suma
kwadratów, SSE suma kwadratów błędów.

Twierdzenie 1. Prawdziwa jest równość

SST = SSR+ SSE.

Dowód można znaleźć w książce Koronackiego i Mielniczuka, str. 270.
Współczynnik SSR/SST zwany współczynnikiem determinacji (oznaczanymR2) okre-
śla stopień, w jakim zależność liniowa między zmienną objaśnianą a objaśniającą tłu-
maczy zmienność wykresu rozproszenia.

Współczynnik korelacji

Definicja 2. Współczynnikiem korelacji próbkowej dla próbki dwuwymiarowej (x1, y1), (x2, y2), . . . , (xn, yn)
nazywamy zmienną liczbę

r =
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)
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gdzie x̄ i sx oznaczają średnią i odchylenie standardowe próby x1, x2, . . . , xn i podob-
nie ȳ i sy oznaczają średnią i odchylenie standardowe próby y1, y2, . . . , yn.
Uwaga. W powyższej definicji przez n-elementową próbę dwuwymiarową rozumiemy
ciąg n par liczb (a nie zmiennych losowych).

Współczynnik determinacji a współczynnik korelacji
Można udowodnić, że współczynnik korelacji przyjmuje wartości z przedziału [−1, 1].
Wartości współczynnika korelacji bliskie 1 lub −1 wskazują na istotną zależność li-
niową pomiędzy zmiennymi.

Twierdzenie 2. Zachodzi równość

r2 = SSR/SST.

Przykład z cenami domów w Maplewood— c.d.
Wykonując obliczenia dla danych h1 otrzymujemy

R2 = RRS/RRT = 0,7944 r = 0,891287.

Problem: powyższe wartości współczynników: determinacji i korelacji wskazują na
istotną zależność pomiędzy cenami domów w latach 1970 i 2000?

Statystyczny model zależności liniowej
Rozważmy model regresji liniowej:

Yi = β0 + β1xi + εi, i = 1, . . . , n, (5)

gdzie β1 i β2 są pewnymi stałymi a ε1, . . . , εn są niezależnymi zmiennymi losowymi
o rozkładzie N(0, σ). Przyjmujemy ponadto, że wartości xi nie są sobie równe (nie są
równe jednej liczbie).
Mamy tu n zmiennych losowych: Y1, Y2, . . . , Yn.
Dla zmiennej Yi wartość oczekiwana jest równa:

µYi = E(β0 + β1xi) + E(εi) = β0 + β1xi, i = 1, . . . , n.

Sens: Wartość objaśniana jest równa funkcji liniowej zmiennej objaśnianej plus pewien
błąd losowy.

Wnioskowanie statystyczne w modelu zależności liniowej
Możemy być zainteresowani:

• estymacją parametrów β0, β1,

• estymacją wariancji σ2,

• estymacją przedziałową ww. parametrów lub ich funkcji;

• testowaniem hipotez dotyczących parametrów.
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Weryfikacja hipotezy dotyczącej istotności β1

Jesteśmy zainteresowani weryfikacją

H0 : β1 = 0 przeciw H1 : β1 6= 0.

Stosowną statystyką testową okazuje się

t =
b1
S

√√√√ n∑
i=1

(xi − x̄)2

gdzie

b1 =
∑n
i=1 xi(Yi − Ȳ )∑n
i=1(xi − x̄)2 ,

S2 =
∑n
i=1(Yi − b1xi − b0)2

n− 2
z b0 = Ȳ − b1x̄.

Weryfikacja hipotezy dotyczącej istotności β1-c.d.
Można pokazać, że

t ∼ tn−2 (t ma rozkład t-Studenta z n− 2 st. swobody).

Obszarem krytycznym dla poziomu istotności α jest:

(−∞,−t1−α/2,n−2] ∪ [t1−α/2,n−2,∞)

Hipotezę H0 przeciwko H1 można również testować opierając się na statystyce

F =
SSR

SSE/(n− 2)
.

W powyższym wzorze SSR i SSE obliczamy kładąc Yi zamiast yi w odpowiednich
wzorach (por. str. 10). Statystyka F ma rozkład F1,n−2.

Obliczenia w środowisku R

> reg<-lm(y2000~y1970,data=h1)
> summary(reg)

Call:
lm(formula = y2000 ~ y1970, data = h1)

Residuals:
Min 1Q Median 3Q Max

-102658 -20099 -8331 31617 94918

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.348e+04 6.341e+04 -0.213 0.836
y1970 4.377e+00 7.042e-01 6.216 9.94e-05 ***
--
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Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 52860 on 10 degrees of freedom
Multiple R-Squared: 0.7944, Adjusted R-squared: 0.7738
F-statistic: 38.64 on 1 and 10 DF, p-value: 9.938e-05

p-wartość odpowiadająca weryfikacji

H0 : β1 = 0 przeciw H1 : β1 6= 0.

jest równa 9.938e − 05 = 0,0000938— są podstawy do odrzucenia H0 nawet dla
poziomu istotności α = 0,0001.

Problem prognozy
Jesteśmy zainteresowani ceną, za którą można byłoby sprzedać pewien dom w Maple-
wood, który w 1970 r. kosztował 100000; (informacje dotyczące ceny tego domu w
2000 r. nie znajdują się w naszym zbiorze danych).

Problem prognozy— rozważania dla ogólnego przypadku
W modelu zależności liniowej jesteśmy zainteresowani oszacowaniem wartości ocze-
kiwanej:
Prognozą zmiennej zależnej Y dla ustalonej wartości x0 nazywamy zmienną losową:

Y (x0) = β0 + β1x0.

Sensowne oszacowanie wartości oczekiwanej Y (x0):

Ȳ (x0) = b0 + b1x0.

Przedział ufności na poziomie ufności 1− α dla wartości oczekiwanej Y (x0) :

Ȳ (x0)± t1−α/2,n−2SEȲ (x0)

gdzie SEȲ (x0) = S
√

1
n + (x0−x̄)2∑n

i=1
(xi−x̄)2

Problem prognozy— przykład
Chcemy znaleźć wartość oczekiwaną Y (100000) (dla danych h1) i 95-procentowy
przedział ufności dla Y (100000).
Poleceniem systemu R, przy pomocy którego można wykonać odpowiednie obliczenia
(wyżej opisane) jest predict; dla naszych konkretnych danych należy je zastosować w
następujący sposób:

> predict(reg,data.frame(y1970=100000),
interval="confidence",level=0.95)

fit lwr upr
[1,] 424264.2 384932.2 463596.1

a więc 95-procentowym przedziałem ufności dla Y (100000) jest (384932,2; 463596,1).
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Rysunek 3: Prosta MNK i 95-procentowe krzywe ufności

Krzywe ufności
Z połączenia końców przedziałów ufności dla Y (x̃i) dla odpowiednio dobranego cią-
gu (skończonego) x̃1, . . . , x̃m, „wypełniającego” przedział zmienności zmiennej nie-
zależnej xmin, . . . , xmax otrzymujemy tzw. krzywe ufności. Dodanie tych krzywych
do wykresu rozproszenia z zaznaczoną prostą regresji pozwala na odczytanie z wy-
kresu końców przedziału ufności (lub ich przybliżonej wartości) dla Y (x̃0), gdzie
x0 ∈ [xmin, xmax]

Krzywe ufności—c.d.

Weryfikacja poprawności modelu
W naszych rozważaniach założyliśmy, że dane z h1.
Założenie (o adekwatności modelu) można weryfikować analizując wartości resztowe
(rezydua)— por. Koronacki i Mielniczuk (2001), par. 4.2.5 (str. 284–291).
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